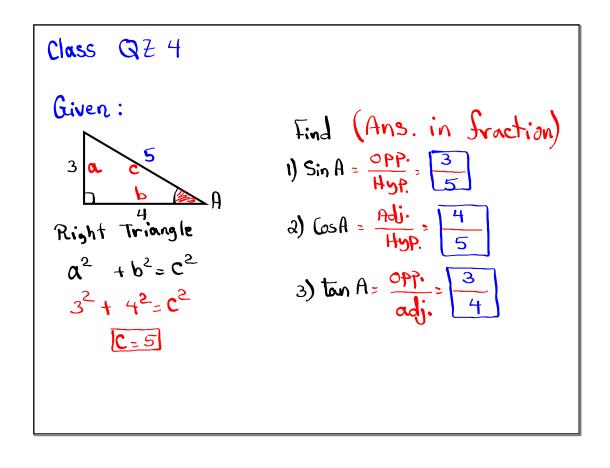


Feb 19-8:47 AM



Class QZ 3

Evaluate
$$\int \frac{e^{x}}{e^{x}} \frac{dx}{dx} = u = e^{x} + 1 \checkmark dx = e^{x} dx$$

$$= \int \frac{1}{n} du = \ln |u| + C$$

$$= \ln |e^{x} + 1| + C$$
Since $e^{x} + 1 > 0$, No Abs. Value needed.
$$= \ln (e^{x} + 1) + C$$

Expand
$$\log_2 \frac{32 x^2}{\sqrt{3z}}$$
 Recall

= $\log_2 32 x^2 - \log_2 30z^2$ $\log_2 M - \log_2 M$

= $\log_2 32 x^2 - \log_2 (yz)^{1/3}$ $\log_2 M \log_2 M \log_2 M$

= $\log_2 32 + \log_2 x^2 - \log_2 (yz)^{1/3}$ $\log_2 M \log_2 M \log_2 M$

= $\log_2 5 + 2\log_2 x - \frac{1}{3}\log_2 (yz)$ Notice

= $\log_2 5 + 2\log_2 x - \frac{1}{3}\log_2 y + \log_2 z$ $\log_2 5 = 1$

= $5 + 2\log_2 x - \frac{1}{3}\log_2 y - \frac{1}{3}\log_2 z$

Use logarithmic diff. to Sind
$$\frac{dy}{dx}$$
 $y = \sqrt{\frac{x-1}{x^4+1}}$ take In of both Sides,

In $y = \ln \sqrt{\frac{x-1}{x^4+1}}$ take derivative.

In $y = \ln \sqrt{\frac{x-1}{x^4+1}}$ take derivative.

 $2 \ln y = \ln(x-1) - \ln(x^4+1)$
 $2 \cdot \frac{1}{y} \cdot \frac{1}{dx} = \frac{1}{x-1} - \frac{4x^3}{x^4+1}$
 $\frac{dy}{dx} = \frac{y}{2} \left[\frac{1}{x-1} - \frac{4x^3}{x^4+1} \right]$
 $\frac{dy}{dx} = \frac{y}{2} \left[\frac{1}{(x-1)(x^4+1)} \right] = \frac{y}{2} \left[\frac{x^4+1-4x^4+4x^3}{(x-1)(x^4+1)} \right]$
 $\frac{dy}{dx} = \frac{1}{2} \left[\frac{x-1}{x^4+1} \left(\frac{-3x^4+4x^3+1}{(x-1)(x^4+1)} \right) \right]$

Use logarithmic diff. to find
$$\frac{dy}{dx}$$
 for $\cos x$
 $y = (\ln x)$

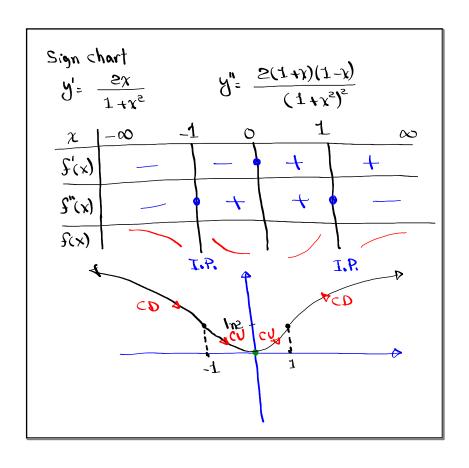
Iny = $\ln (\ln x)$

Product Rule

 $\ln y = \cos x \ln (\ln x)$
 $\frac{y'}{y} = -\sin x \cdot \ln (\ln x) + (\cos x) \cdot \frac{1}{\ln x}$
 $y' = y \left[-\sin x \ln (\ln x) + \frac{\cos x}{x \ln x} \right]$
 $y' = (\ln x)$
 $\int_{-\sin x \ln (\ln x)}^{\cos x} \left[-\sin x \ln (\ln x) + \frac{\cos x}{x \ln x} \right]$

Discuss the graph of
$$y = \ln(1 + \chi^2)$$

Domain $1 + \chi^2 > 0$ $\rightarrow (-\infty, \infty)$
 $f(x) = \ln(1 + \chi^2)$ Even Sunction
 $f(x) = \ln(1 + \chi^2)$ Sym. $\rightarrow Y$ -axis
 $f(-x) = \ln(1 + (-\chi^2)) = \ln(1 + \chi^2) = f(x)$
 Y -Int $\rightarrow \chi = 0$ $\rightarrow y = \ln(1 + 0^2) = \ln 1 = 0 \rightarrow (0,0)$
 χ -Int $\rightarrow y = 0$ $\rightarrow \ln(1 + \chi^2) = 0$
 χ -Int $\rightarrow y = 0$ $\rightarrow \ln(1 + \chi^2) = 0$
 χ -Int $\rightarrow y = 0$ $\rightarrow \ln(1 + \chi^2) = 0$
 χ -Int $\rightarrow \chi = 0$ χ -Int χ



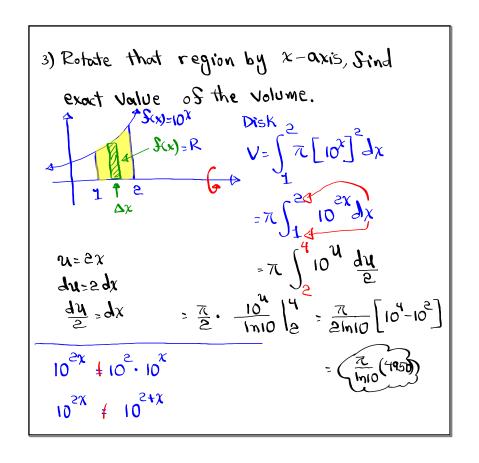
Criven
$$f(x) = 10^{x}$$

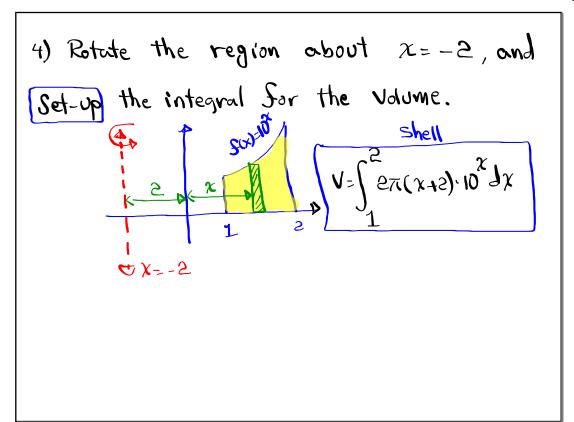
1) Graph the region below $f(x)$, above x -axis, $f(x) = 10^{x}$

2) Sind the exact area of this region.

$$A = \int_{1}^{2} \frac{10^{x}}{10^{x}} dx$$

$$= \frac{1}{\ln 10} \cdot \frac{10^{x}}{10^{x}} - \frac{10^{x}}{10^{x}} = \frac$$





find y if
$$xy^2y'=x+1$$

$$xy^2 \frac{dy}{dx} = x+1$$

$$xy^2 dy = (x+1) \frac{dx}{x}$$

$$y^2 dy = \frac{x+1}{x} \frac{dx}{dx}$$

$$y^2 dy = \frac{x+1}{x} \frac{dx}{dx}$$

$$y^2 dy = \int \frac{x+1}{x} \frac{dx}{dx}$$

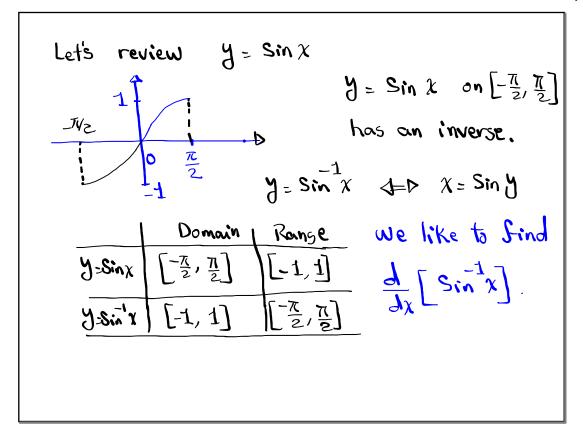
$$\int y^2 dy = \int \frac{x+1}{x} \frac{dx}{dx}$$

$$\frac{x+1}{x} = \frac{x}{x} + \frac{1}{x}$$

$$= 1 + \frac{1}{x}$$

$$\frac{y^3}{3} = x + |m|x| + C$$

$$y^3 = 3(x + |m|x| + C)$$



Sind
$$\frac{dy}{dx}$$
 for $y = \sin^{-1}x$
 $\frac{1}{1}$ hyp.

Implicit diff.

$$1 = \cos y \cdot \frac{dy}{dx}$$

$$\cos y = \frac{1}{1} = 1 + x^{2}$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

$$\frac{dy}{dx} = \frac{1}{1 + x^{2}}$$

find
$$\frac{d}{dx} \left[\cos^{-1} x \right]$$
 $y = \cos^{-1} x$
 $x = \cos y$
 $1 = -\sin y \cdot \frac{dy}{dx}$

Sin $y = \sqrt{1-x^2}$
 $\frac{dy}{dx} = \frac{-1}{\sin y}$
 $\frac{dy}{dx} = \frac{-1}{\sin y}$

$$\frac{d}{dx} \left[\cos^{-1} \left(\frac{\sin x^{2}}{y} \right) \right] = \frac{-1}{\sqrt{1 - u^{2}}} \cdot \frac{dy}{dx}$$

$$= \frac{-1}{\sqrt{1 - S_{in}^{2} x^{2}}} \cdot \left(\cos x^{2} \cdot 2x \right)$$

$$= \frac{-1}{\sqrt{\cos^{2} x^{2}}} \cdot \left(\cos x^{2} \cdot 2x \right) = \frac{-1}{\cos x^{2}} \cdot \left(\cos x^{2} \cdot 2x \right)$$

$$= -2x$$

$$\frac{d}{dx} \left[\tan^{-1} x \right] \qquad y = \tan^{-1} x \qquad \Rightarrow x = \tan y^{\frac{x}{1}}$$

$$1 = \sec^{2} y \qquad \frac{dy}{dx}$$

$$\cos y = \frac{1}{1 + x^{2}}$$

$$\cos^{2} y = \frac{1}{1 + (\sqrt{x})^{2}}$$

$$\frac{dy}{dx} = \frac{1}{1 + x^{2}}$$

$$\frac{d}{dx} \left[\operatorname{Sin}^{-1} \chi \right] : \frac{1}{\sqrt{1-\chi^2}} \left\{ \frac{d}{dx} \left[\operatorname{Csc}^{-1} \chi \right] : \frac{-1}{\chi \sqrt{\chi^2-1}} \right\}$$

$$\frac{d}{dx} \left[\operatorname{Cos}^{-1} \chi \right] : \frac{1}{\sqrt{1-\chi^2}} \left\{ \frac{d}{dx} \left[\operatorname{Sec}^{-1} \chi \right] : \frac{1}{\chi \sqrt{\chi^2-1}} \right\}$$

$$\frac{d}{dx} \left[\operatorname{Tan}^{-1} \chi \right] : \frac{1}{1+\chi^2} \left\{ \frac{d}{dx} \left[\operatorname{Cof}^{-1} \chi \right] : \frac{-1}{1+\chi^2} \right\}$$

$$\frac{d}{dx} \left[\operatorname{Sec}^{-1} x \right] \qquad y = \operatorname{Sec}^{-1} x \qquad + x = \operatorname{Sec} y$$

$$x = \int_{\mathbb{R}^{2} - 1}^{\infty} (\operatorname{os} y) = \frac{1}{x} \qquad 1 = \operatorname{Sec} y \quad \tan y \quad \frac{dy}{dx}$$

$$\operatorname{Sec} y = x \qquad \frac{dy}{dx} = \frac{1}{x \sqrt{x^{2} - 1}}$$

$$\operatorname{dy} = \int_{\mathbb{R}^{2} - 1}^{\infty} \frac{dy}{dx} = \frac{1}{x \sqrt{x^{2} - 1}}$$

$$\operatorname{dy} = \int_{\mathbb{R}^{2} - 1}^{\infty} \frac{dy}{dx} = \frac{1}{x \sqrt{x^{2} - 1}}$$

Sind the exact Value of the shaded area below.

$$A = \int_{0}^{1} \frac{4}{1+x^{2}} dx$$

$$S(x) = \frac{4}{1+x^{2}} = 4 \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

$$= 4 \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

Evaluate
$$\int \frac{1}{4 + \chi^2} d\chi = \frac{1}{1 + \chi^2} d\chi = \frac{1}{1 + (\frac{\chi}{2})^2} d\chi$$

$$= \int \frac{1}{4(1 + \frac{\chi^2}{4})} d\chi = \frac{1}{4} \int \frac{1}{1 + (\frac{\chi}{2})^2} d\chi$$

$$= \frac{1}{4} \int \frac{2}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + (\frac{\chi}{2})^2} d\chi$$

$$= \frac{1}{4} \int \frac{2}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi$$

$$= \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi$$

$$= \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi$$

$$= \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi$$

$$= \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi$$

$$= \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi = \frac{1}{4} \int \frac{1}{1 + \chi^2} d\chi$$

$$= \frac{1}{4} \int \frac{$$

find the area below
$$f(x) = \frac{x}{1+x^4}$$
,

above x -axis, from $x=0$ to $x=1$.

$$f(0)=0$$

$$f(x)=\frac{1}{2}$$

$$f(x)>0$$

$$f(x)=\frac{1}{2}$$

$$f(x)>0$$

$$f(x)=\frac{1}{2}$$

$$f(x)>0$$

$$f(x)=\frac{1}{2}$$

$$f(x)>0$$

$$f(x)=\frac{1}{2}$$

Class QZ 5 (Open Notes)

Show
$$\frac{d}{dx} \left[\cot^{-1} x \right] = \frac{-1}{1 + \chi^2}$$
 $y = \cot^{-1} x$
 y